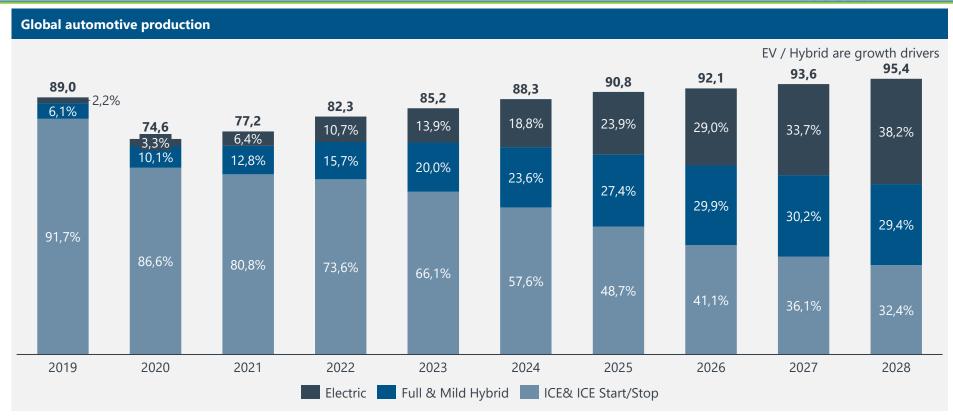


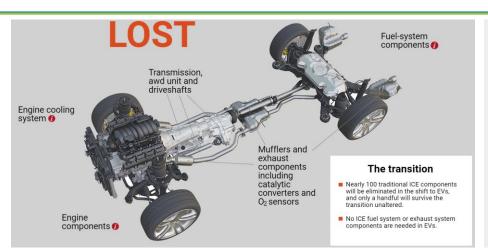
Electric vehicles and new energy – Surface treatment opportunities

Pavel Yafaev | Business Development Manager EVO Europe



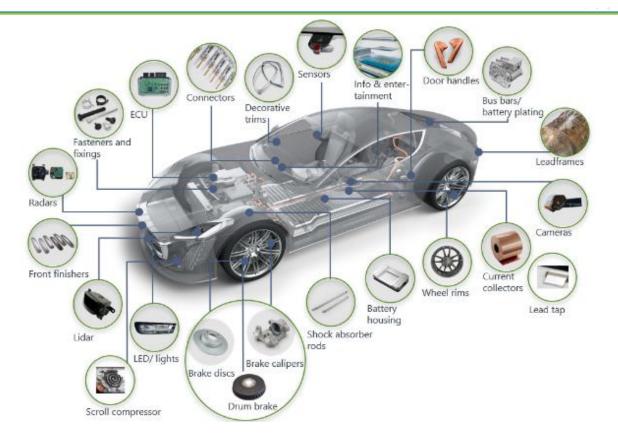
EV and **NE**

Electrical Vehicles and New Energy


Global automotive market information

Source: IHS March 2023

ICE vs. BEV


- Engine/parts
- Engine cooling system (front finisher)
- Fuel system
- Exhaust system
- Gear box/transmission

- + Charging
- + Gear box E-drive/recuperation system
- + Battery system
- + Sophisticated thermal management system
- + More electronics

Source: Automotive news, July 2022

Automotive trends Overview

.

EV and **NE**

Applications and opportunities

Battery housings

Function:

Outer covers for battery cell modules and packs

Base material:

Al, steel, plastic, C-fiber

Surface treatment:

- Al: Conversion coating
- Steel: Corrosion protection
- Cleaning, preparation for paint/e-coat

Additional applications:

- Paint removal for reclamation of defective parts
- Paint removal for fixture and rack cleaning

Battery Housing

Module/Pouch Cover

Battery housings Current EV mass production – Examples

Mercedes EQA 250 AMG Peugeot 208 e GT **VW ID.3** Polestar 2 Nissan Leaf Tekna AlMg4.5Mn0.4 Steel Steel; Plastic Steel Steel AlSi7Mg AlMg4.5Mn0.4 AlMg5Si2Mn Steel Nonferrous unknown metal; Steel Steel

Copyright: A2MAC1

Steel

Steel

Steel battery housings Surface treatment technologies

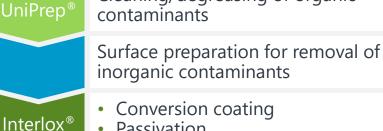
Past trend:

Simple coatings for steel

Future trend:

Higher standards, longer vehicle lifetime

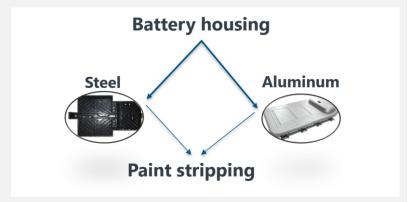
- Enhanced corrosion and adhesion characteristics required
- More advanced coating systems are needed



Aluminum battery housings

Surface treatment technologies

- Trends in the new vehicle design (weight reduction, carbon footprint reduction)
 - Aluminum use
 - Adhesive instead of welds and mechanical fasteners
- Contact/volume/surface resistance is becoming increasingly important in the battery system, specifically for passivated components
- Where is it used: Aluminum closures (doors, hoods, trunks and liftgates), body structure and chassis (underbody, pillars and roof), battery pack
- For enhanced corrosion and adhesion characteristics, a more advanced pretreatment system is needed
- All process steps or a selective selection depending on technical requirements


- Conversion coating
- Passivation
- E-coat/KTL
- Coating for fire or dielectric resistance

Additional applications

Paint stripping

- Two scenarios: part reclamation and rack/fixture cleaning
 - Battery housings are a complex and expensive component; when re-painting is not possible, complete removal of the paint is required
 - Rack cleaning is essential to ensure proper grounding or fixturing of the part
- Incomplete removal of paint from battery housings or racks can increase the risk of producing defective parts
- Conventional processes, such as thermal or mechanical paint removal, are not ideal options in these applications
 - Mechanical methods can damage substrate and leave residues in recessed areas
 - Thermal methods are typically not applicable for aluminum components due to the very high temperatures used (>500 °C) which would severely compromise the structural integrity of the housing

Paint fixture after paint removal

Thermal management systems

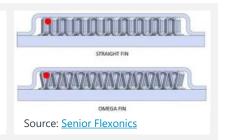
EV – Thermal management systems

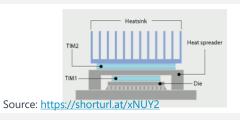
IGBT heat sinks, heat spreaders, scroll compressors

Heat sinks and heat spreaders:

- Function: Cooling of electrical devices
- Base material: Cu alloys

Scroll compressor:


- Function: Heart of EV's climate system, compresses gas from evaporator and relays it to the condenser
- Base material: Al alloys

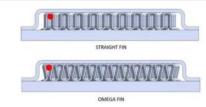

Surface treatment:

- Pretreatment
- E'less Ni, immersion Sn, anodizing

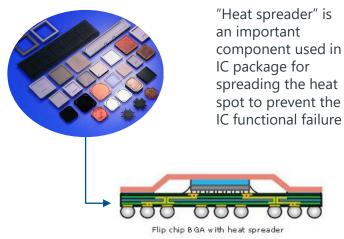
compressor/

IGBT heat sinks

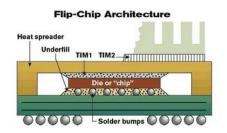
- IGBT inverters transfer power between the motors and batteries and are one of the critical components in an electric vehicle
 - The inverter converts DC to AC when power is required to drive the electric motors and converts in the opposite direction during regenerative braking.
- The main component inside the inverter is the IGBT (Insulated Gate Bipolar Transistor) which generates a lot of heat.
 - An effective method of cooling the IGBT is through a liquid cooled heat sink



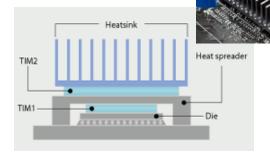
Source: Senior Flexonics


The IGBT heat sink is made by brazing together two copper or aluminum plates (cover plate, and fin). Coolant enters through a spigot in the cover plate and then flows across the fin and exits through the spigot on the opposite side. The base plate sits on top of the IGBT to allow for surface contact cooling.

Heat spreaders


Metal stack

- Mid P Electroless
- Nickel process
- Complete process chemistry
- Nichem® 1120
- Nichem® MP 1188
- ELeVEN® MP 603
- Nichem® HP 1151
- Uniclean® 154
- Uniclean® 251
- Nichem® Copper Etch
- Nichem® PD
- Nichem® Activator



Heat sinks

- Substrate:Copper
- CPU heat spreader for IC packaging

Heat sinks dissipate the heat to the surrounding environment

Advanced cleaning

Sustainable pretreatment process to prepare copper surfaces for plating

NiP is the coating of choice:

- Electroless nickel (3 7 μm)
 - Excellent adhesion
 - Good solderability
 - Consistent plating speed
 - Uniform thickness
 - Long bath life
 - Semi-bright and uniform appearance

Sources: https://shorturl.at/xNUY2, https://shorturl.at/clp08, https://shorturl.at/grvzY, https://jaxlifesharing.com/stock2486/

Scroll compressors

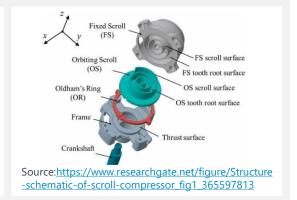
Function:

To compress low-pressure and low-temperature gas from the evaporator, converts it into highpressure gas and relays it to the condenser

Advantages:

- Reliable (less moving parts)
- Highly efficient
- Quite Less noise and vibration
- Reduces weight/cost
- Applies to various voltage levels (48 V, 400 V, 800 V)

Uses:


- Automotive superchargers (EV/HEV)
- Refrigeration
- Vacuum pumps

Source: https://gfycat.com/delayedvainannelida

Scroll compressors – Coating selection

Function of coating:

- Corrosion resistance coating to protect the aluminum substrate surface
- Wear resistance to the aluminum surface during operation
- To ensure tight tolerance between rotating and fix scrolls
- · Self lubrication to reduce fretting wear

Electroless nickel for rotating scrolls:

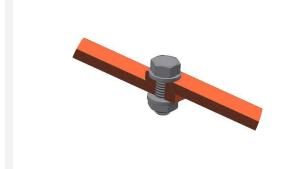
- Hard as plated NiP alloy coating maximum wear resistance
- Uniform deposit thickness over entire surface no current density distribution effect
- Very high corrosion resistance against aggressive environments
- Low fretting wear

Immersion tin for fixed scrolls:

- · Uniform deposit thickness over the whole coating
- Dry lubrication against the opposing surface
- Reduces fretting wear

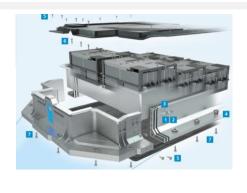
Fasteners

Function:

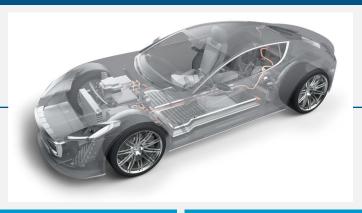

Mechanical connection of various parts and components

Base material:

- Steel
- Aluminium


Surface treatment:

- Pretreatment
- Zn, ZnNi, ZnFe, SnZn, ZFC


 $Copyright: A2MAC1, Sources: \underline{https://www.arnold-fastening.com/fileadmin/templates/\underline{media/pdf/produkte/Powertite-EN.pdf}$

EV Fasteners

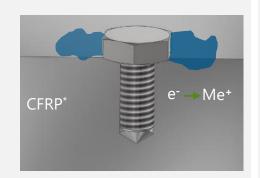
Application opportunities

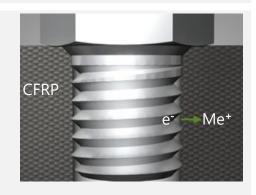
~ 2,500 pcs. fasteners in EVs

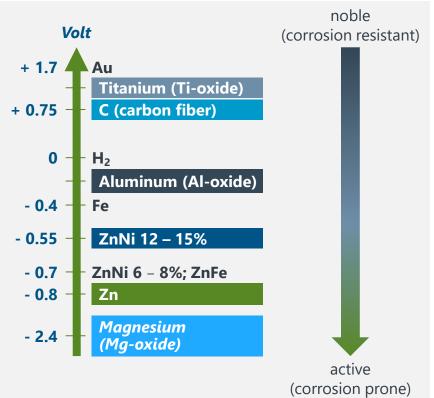
Today's fasteners applications

- Zn and ZnNi plated fasteners Example battery housing applications
- Zinc flake coatings for EVs fastening parts
- CP applications for visible fasteners with specific appearance requirements

Technologies for new applications


- Conductivity requirements on fasteners
- Extreme technical cleanliness requirements
- Upcoming bi-metallic-corrosion requirements


Contact corrosion


Theory

Galvanic contact corrosion is an electrochemical process in which one metal corrodes when it is in electrical contact with another in the presence of an electrolyte

The smaller the potential difference, the lower the corrosion current

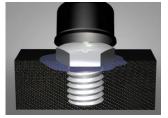
^{*} carbon fiber reinforced plastic

Contact corrosion Technical solutions for CFRP

Different measures to avoid contact corrosion:

- Design solutions
- Material of the substrate
- Atotech coatings

Reduction of contact corrosion



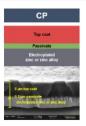
.

Design

Stop electron flow between metallic screw and carbon fibres

Space requirements

Material



Ti

Low potential difference to carbon

Expensive

Coating

Barrier coating to avoid current flow + potential difference

Under investigation

We offer advanced coating solutions to avoid contact corrosion

Conductive surfaces

EV – Conductive surfaces

Busbars, cables, connectors, lead tabs, battery terminals

Function:

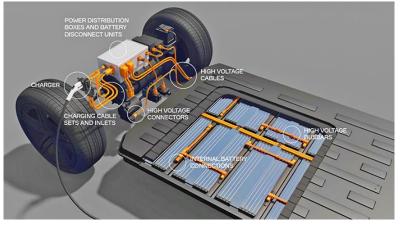
Provide electrical connection between different parts and components

Base material:

- Others

Surface treatment:

- Pretreatment
- FEC, DECO, EN coatings


<u>images</u>

EV – Connectors and busbars

Different base materials and requirements (conductivity, hardness, friction properties, corrosion resistance) → different coatings needed: Ni, Sn, Aq, Au, ...

Various part design → different plating methods: Racks, barrels, reel-to-reel

Sources: TE Connectivity, https://iot-automotive.news/aptiv-the-path-to-zero-emissions/, https://www.aptiv.com/en/solutions/vehicle-electrification-systems

Busbars

cell or module connections

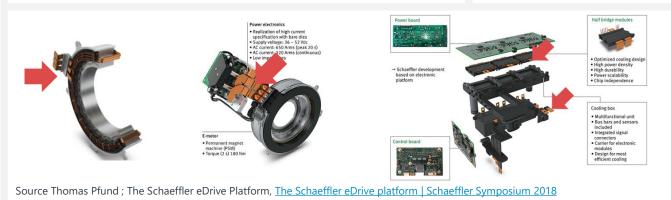
EV – Battery terminals

- The number of cells in an EV varies widely based on the cell format. On average, EVs with cylindrical cells have between 5,000 and 9,000 cells
- This is in stark contrast with pouch cells, which only have a few hundred cells, and an even lower number in prismatic cells
- Terminals are made of Cu and plated with either Semi-bright Ni or EN (5 8 μm for welding application)

Source https://chargedevs.com/features/a-closer-look-at-wire-bonding/)

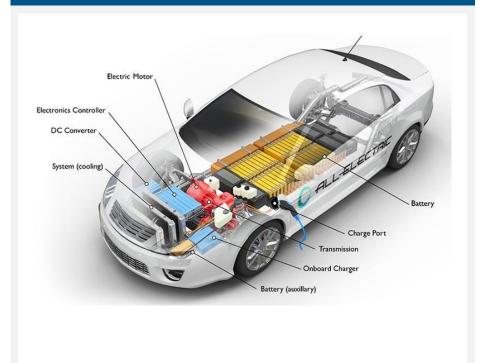
Source: teslamotorsclub.com, https://teslamotorsclub.com/tmc/threads/building-my-own-pseudopowerwall.154473/

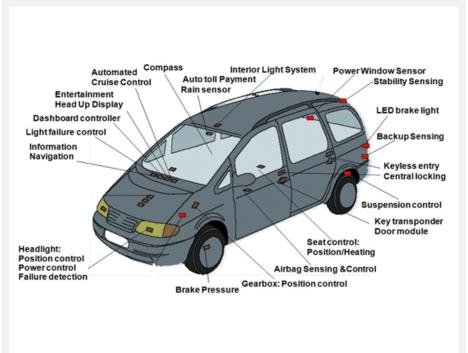
EV – Conductive surfaces


More examples

Source: Nio Battery - Bing images

X-section through a battery charger. Female connector port is a Ag plated Cu alloy for high current density load and multiple connect and disconnect cycles





Electromagnetic interference (EMI): Sources and victims

Sources of EMI

Victims of EMI

Source: circuitdigest

EMI shielding solutions

Known methods:

- Conventional metal cap
- Sputtering

- Spraying a conductive coating
- Electroplating

	Size and weight	Thickness and distri- bution	Side wall coverage	Cost per package	Conduc- tivity	Soft magnetic layer possible?	Sandwich layer
Metal can	Very high	Good	Good, same as on top	Medium	High, almost pure Metal	Yes	Possible
Sputtering	Low	Total thickness limited	Reduced side wall thickness	High	High, almost pure Metal	Yes, but with high tensile stress	Yes, but limited thickness
Spraying	Low	Good	Reduced side wall thickness	Low	Low, metal + organic liquid	No	No
Electro- plating	Low	Good	Good, same as on top	Low	High, pure Metal	Yes	Possible

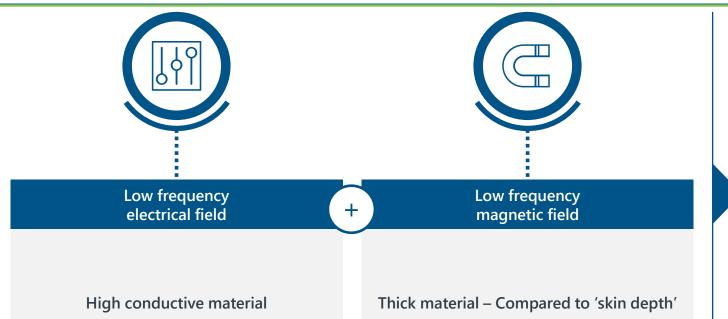
Source: hollandshielding

Source: Tech-etch.com

OEMs are driving weight saving \rightarrow better travel distance

Housings of EMI sources comparison

- Steel = 2.7 kg
- Aluminum = 1 kg
- Plastic = 0.4 kg


Example: EV converter 23 dm² surface area

- Next step for additional weight saving Use of engineered plastics
- No shielding as plastic is not conductive
- Atotech solution: Plating on plastic

Source: empcasting

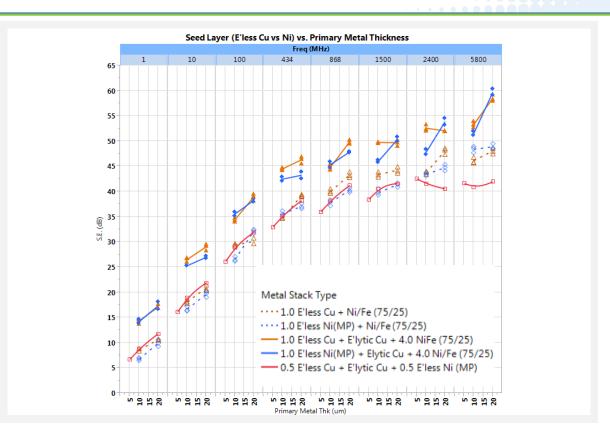
EMI electromagnetic interference What makes an effective shield?

Electroplating

Adhesion promoter: Covertron®

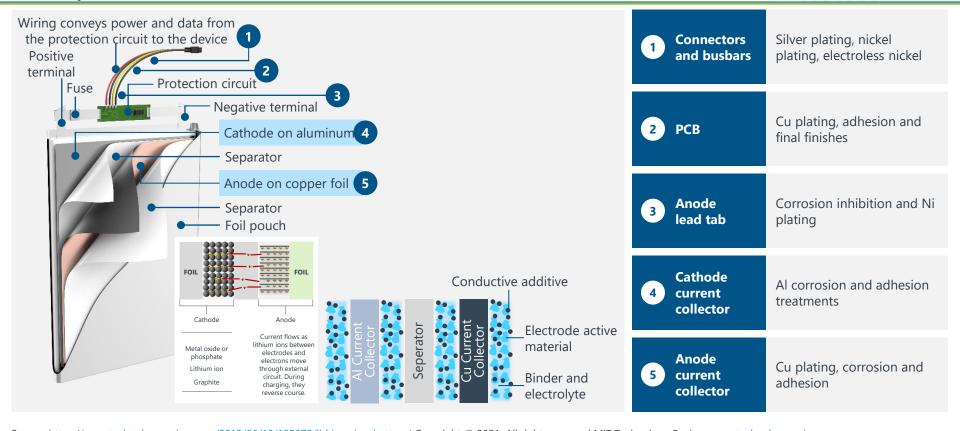
> Electrical field **Cupracid®** (Cu)

Magnetic field Permalloy (NiFe)


"Thick and alternating metal layers" is the sweet spot of electroplating

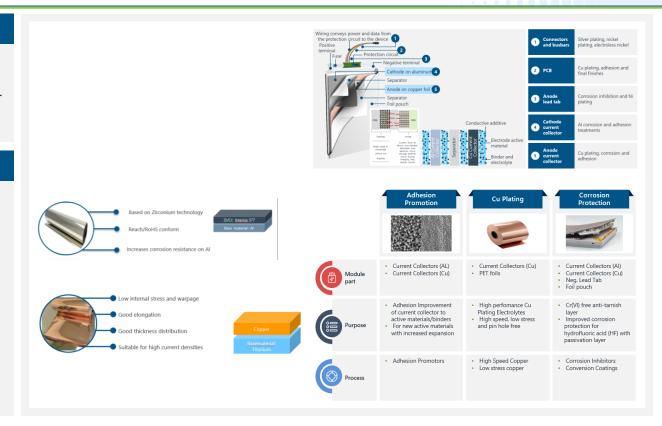
EMI electromagnetic interference

Milestones



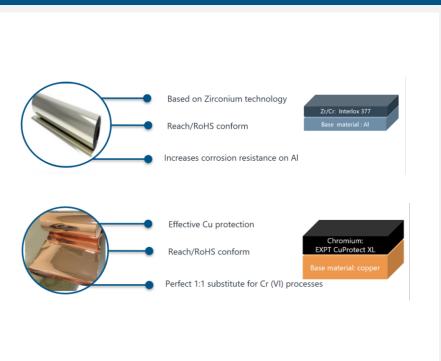
Where you find Atotech solutions in battery cells Battery cell

Source: https://www.technologyreview.com/2012/06/19/185373/lithium-ion-battery/ Copyright © 2021, All rights reserved MIT Technology Review; www.technologyreview.com/2012/06/19/185373/lithium-ion-battery/ Copyright © 2021, All rights reserved MIT Technology Review; www.technologyreview.com/

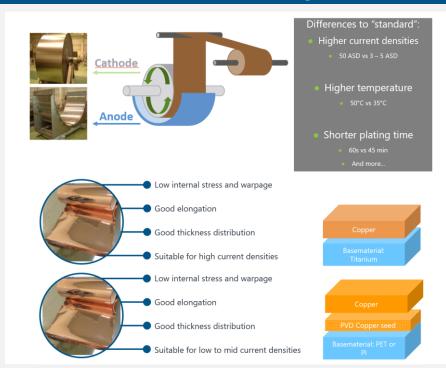

EV – Battery foils (current collectors)

Function:

Current collector works as electrical conductor between the electrode and external circuits as well as a support for the coating of the electrode materials


Surface treatment needed:

- Cu, Al corrosion and adhesion treatment
- Ni plating
- Cu plating
- New gen. batteries: Ni, Ag, Sn plating



Surface treatment technologies

Al and Cu foil treatment

Cu electroplating

Other applications

EV - Much more

Charging stations, Al applications, braking systems

Charging stations:

Complex units: Various surface treatment

Al body parts:

- Al treatment
- Paint pretreatment
- · Paint stripping

Braking systems:Corrosion protectionPaint pretreatment

Paint stripping

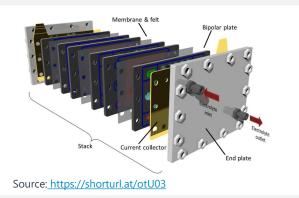
New energy – Hydrogen

NE – Hydrogen

Electrolysers, fuel cells, H2 infrastructure

Function:

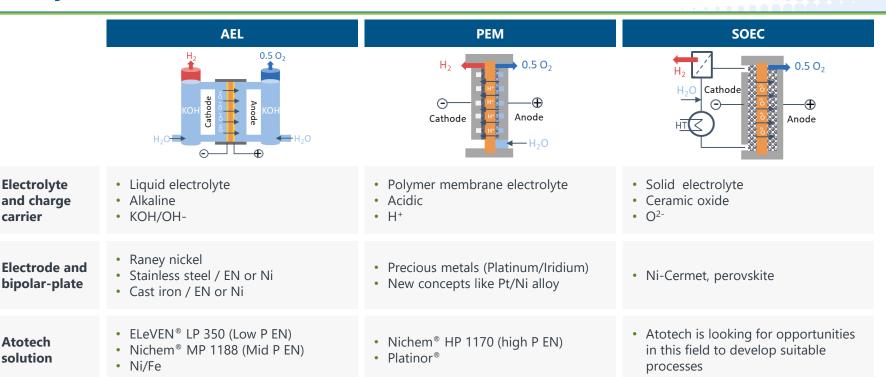
- Electrolysers split water molecule into hydrogen and oxygen using electric energy
- Fuel cells produce electricity by combining hydrogen and oxygen atoms


Base material:

- Steel
- Ti
- Others

Surface treatment:

- AEL: EN, eNi coatings
- PEM: Precious metal coatings



Source: https://shorturl.at/sCEO1

Electrolyser

Atotech metallisation processes to increase efficiency and long term stability

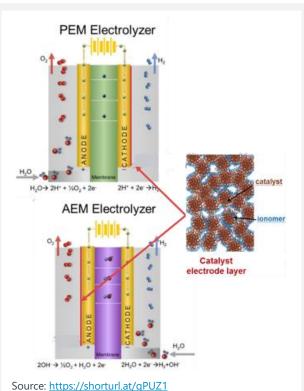
Source: Fraunhofer Institute

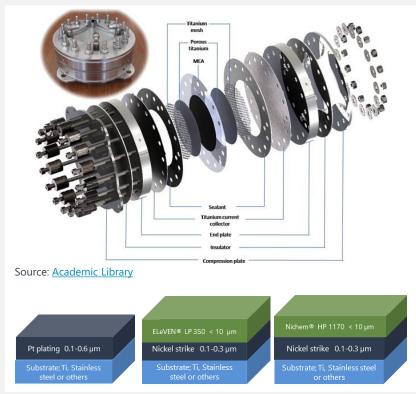
carrier

Atotech

solution

Electrolyser

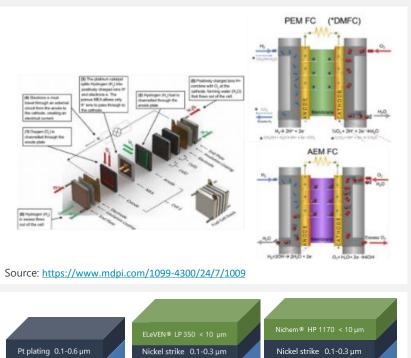

Hydrogen electrolyzer



Source: https://shorturl.at/wAMZ3

Source: https://shorturl.at/hpNV6

Hydrogen fuel cell



Source: https://shorturl.at/izEO2

Source: **ZF** and Freudenberg

.

Storage and transport

Hydrogen production, compression and storage

Transportation e.g. category 3 and 4 containers (up to 650 bar @ +85 °C) Fuel station storage and compression

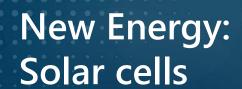
Truck fueling 350 bar (500 bar storage)

Car fueling 700 bar (1034 bar storage)

.

Source: https://shorturl.at/uyCDK

Source: https://shorturl.at/fsTX8

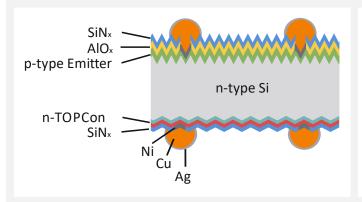


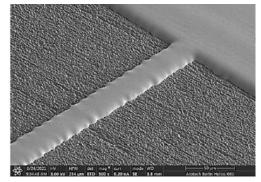
Source: https://shorturl.at/cpuBM

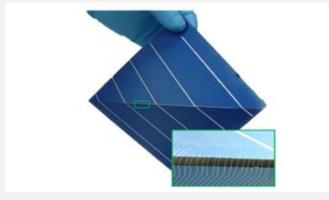
Source: https://shorturl.at/xCJ14

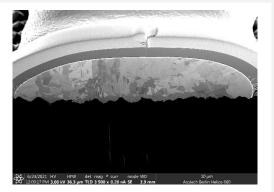
NE – Solar cells

Function:


Convert sunlight into electricity


Base material:

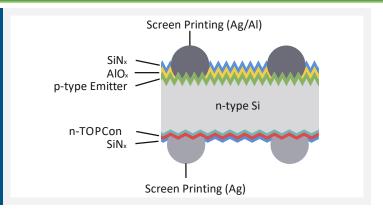

- Si wafer
- Sputtered metal layer


Surface treatment:

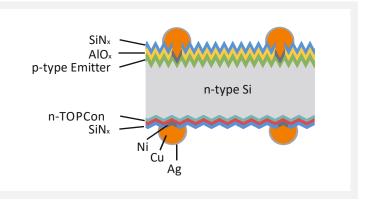
- Pretreatment
- Cu, Ni, Sn, Ag plating

Power solutions - Photovoltatics

Need for alternatives to Ag screen print



Metallization technologies


PERC, TopCON, IBC, HJT

- PERC Classical metallization technology based on Ag paste screen printing
- TopCON, IBC, HJT Advanced technologies, involving plating metallization
- Plating key benefits
 - Higher cell efficiency
 - Better contact and line resistance
 - Narrower finger width
 - Ductile and low stressed metallization
 - Savings/elimination of critical resources Ag

Classical Ag screen print metallization

Atotech Ni/Cu/Ag plated metallization

Thank you!

