

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Accreditation Certificate** that the testing laboratory

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

meets the requirements of DIN EN ISO/IEC 17025:2018 for the conformity assessment activities specified in the following partial accreditation certificates. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided that these are explicitly confirmed in the annexes to the partial accreditation certificates listed below.

D-PL-14564-01-01 D-PL-14564-01-02 D-PL-14564-01-03

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This accreditation certificate consists of this cover sheet, the reverse side of the cover sheet and the following annex. It only applies in connection with the partial accreditation certificates listed above and the notices referred to there.

Registration number of the certificate: D-PL-14564-01-00

Translation issued:

28.05.2024

Berlin, 08.05.2024

Dr. rer. nat. Olga Lettau Head of Technical Unit Dr. rer. nat. Olga Lettau Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

This document is a translation. The definitive version is the original German accreditation certificate.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA:

www.european-accreditation.org

ILAC:

www.ilac.org

IAF:

www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Accreditation Certificate D-PL-14564-01-00 according to DIN EN ISO/IEC 17025:2018

Valid from:

08.05.2024

Date of issue:

08.05.2024

Holder of accreditation certificate:

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed in the annexes to the partial accreditation certificates listed below.

D-PL-14564-01-01 D-PL-14564-01-02 D-PL-14564-01-03

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Partial Accreditation Certificate** that the testing laboratory

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 08.05.2024 with accreditation number D-PL-14564-01-00.

It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 9 pages.

Registration number of the partial accreditation certificate: **D-PL-14564-01-01** It is a part of the accreditation certificate: **D-PL-14564-01-00**.

Berlin, 08.02.2022

Dr. rer. nat. Olga Lettau Head of Technical Unit

Translation issued:

28.05.2024

Dr. rer. nat. Olga Lettau Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

This document is a translation. The definitive version is the original German accreditation certificate.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main

Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Partial Accreditation Certificate D-PL-14564-01-01 according to DIN EN ISO/IEC 17025:2018

Valid from:

08.05.2024

Date of issue:

08.05.2024

This annex is a part of the accreditation certificate D-PL-14564-01-00.

Holder of partial accreditation certificate:

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

with the locations

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Erasmusstraße 20, 10553 Berlin

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Analytiklabor Ahornallee 4, 16818 Werder

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Untergasse 47, 65468 Trebur-Geinsheim

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

Examinations in the areas:

Chemical analysis of industrial chemicals, salt solutions, metal solutions and electroplating baths using chromatographic, spectrometric and titrimetric methods;

Within the test areas marked with **, the testing laboratory is permitted to modify, further develop and develop new test methods without having to inform and obtain prior approval from DAkkS.

The testing laboratory at the Werder (Neuruppin) site is permitted to use in-house procedures of the Berlin site in the test areas 2.1, 2.3 - 2.7 and 2.9 - 2.10 without the need for prior information and approval by DAkkS.

The test methods listed are examples.

The testing laboratory is permitted to use the standardized or equivalent test methods listed here with different issue statuses without having to inform and obtain prior approval from DAkkS.

The testing laboratory has an up-to-date list of all test methods in the flexible accreditation area.

The test methods are marked with the following symbols for the locations at which they are carried out.

The marking B (Berlin), NP (Werder) and TR (Trebur-Geinsheim) after the test and sampling procedures indicates the location for which the competence is confirmed.

B = Atotech Deutschland GmbH & Co. KG, Berlin

NP = Atotech Deutschland GmbH & Co. KG, Werder (Neuruppin)

TR = Atotech Deutschland GmbH & Co. KG, Trebur

Valid from: 08.05.2024

Date of issue: 08.05.2024 Page 2 of 9

1 Metallic layers and Coatings

DIN EN ISO 3613 2011-04	Metallic and other inorganic coatings - Chromate conversion coatings on zinc, cadmium, aluminum-zinc alloys and zincaluminum alloys - Test methods	B, TR
DIN EN 1811 2015-10	Reference test method for release of nickel from all post assemblies which are inserted into pierced parts of the human body and articles intended to come into direct and prolonged contact with the skin	В
DIN EN 62321 2009-12; VDE 0042-1 2009-12	Electrotechnical products - Determination of levels of six regulated substances (lead, mercury, cadmium, hexavalent chromium, polybrominated biphenyls, polybrominated diphenyl ethers) (Deviation: only for lead, chromium, cadmium and hexavalent chromium)	B, TR
DIN EN 62321-3-1 2014-10; VDE 0042-1-3-1 2014-10	Determination of certain substances in electrotechnical products - Part 3-1: Screening - Lead, mercury, cadmium, total chromium and total bromine by X-ray fluorescence spectrometry	В
DIN EN 62321-5 2014-10; VDE 0042-1-5 2014-10	Determination of certain substances in electrotechnical products - Part 5: Cadmium, lead and chromium in polymers and electronics and cadmium and lead in metals by AAS, AFS, ICP-OES and ICP-MS (Deviation: only ICP-OES)	B, TR
DIN EN 62321-7-1 2016-09; VDE 0042-1-7-1 2016-09	Determination of certain substances in electrotechnical products - Part 7-1: Determination of the presence of hexavalent chromium (Cr(VI)) in colorless and colored corrosion-protected coatings on metals by the colorimetric method	B, TR

Valid from: 08.05.2024 Date of issue: 08.05.2024

2 Analyses of industrial chemicals

2.1 Titrimetric determination of elements and anions in salt solutions, metal solutions and electroplating baths (** B und TR)

AV-A0000364 2018-10	Determination of nickel in nickel electrolytes by complexometry	B, NP
AV-A0000410 2015-06	Determination of copper in copper electrolytes by complexometry	B, NP
AV-A0000350 2011-03	Determination of Cr(VI) in chrome electrolytes and etches by redox titration	B, NP
AV-A0000430 2010-12	Determination of Cr(VI) in chrome electrolytes and etches by redox titration	В
PV-11321TIT 2009-01	Determination of Sn(II) in activators by redox titration	B, NP
AV-A0000082 2011-03	Determination of sodium hypophosphite in nickel electrolytes by redox titration	B, NP
AV-A0000480 2018-10	Determination of chloride in nickel electrolytes by precipitation titration	B, NP
AV-A0000353 2011-03	Determination of chloride in acid zinc electrolytes by precipitation titration	B, NP, TR
	• •	
2011-03 AV-A0000412	precipitation titration Determination of chloride in acid copper electrolytes by	TR
2011-03 AV-A0000412 2018-10 AV-A0000026	Determination of chloride in acid copper electrolytes by precipitation titration Determination of sulfuric acid in copper electrolytes by	TR B, NP
2011-03 AV-A0000412 2018-10 AV-A0000026 2013-12 AV-A0000352	Determination of chloride in acid copper electrolytes by precipitation titration Determination of sulfuric acid in copper electrolytes by alkalimetry Determination of boric acid in zinc- or nickel electrolytes by	TR B, NP B, NP,
2011-03 AV-A0000412 2018-10 AV-A0000026 2013-12 AV-A0000352 2018-10 AV-A0000398	Determination of chloride in acid copper electrolytes by precipitation titration Determination of sulfuric acid in copper electrolytes by alkalimetry Determination of boric acid in zinc- or nickel electrolytes by alkalimetry Determination of sodium hydroxide in zinc- or zinc/nickel	TR B, NP B, NP, TR B, NP,

Valid from: 08.05.2024 Date of issue: 08.05.2024

Page 4 of 9

AV-A0000284	Determination of total acid in tin electrolytes by alkalimetry	NΡ
2011-06		

2.2 Determination of organic substances in salt solutions, metal solutions and electroplating baths using gas chromatography with standard detector (FID) **

PV-10595GC 2019-01	Ethylene glycol and diethylene glycol monobutyl ether (Butyldiglycol) in sweller by GC-FID	В
PV-14215GC 2019-01	Diethylene glycol monobutyl ether in etch cleaner by GC-FID	В

2.3 Determination of organic and inorganic substances in salt solutions, metal solutions and electroplating baths using ion chromatography (** B)

PV-9796-IC 2019-07	Determination of hypophosphite and methane sulfonic acid in tin-electrolytes by ion chromatography	B, NP
AV-A0000447 2018-09	Determination of chloride, sulfate, nitrate, phosphate and catalyst C in chrome-electrolytes by ion chromatography	B, NP
PV 13832IC 2015-03	Determination of catalyst N and T in chrome additive by ion chromatography	B, NP
AV-A0002346 2019-07	Determination of stabilizer C1 und C2, BluCr B and sulfate in tri-chrome electrolyte by ion chromatography	В
AV-A0002741 2016-10	Determination of ammonium in treated rinse water by cation-IC	В
PV-13016IC 2017-12	Determination of complexer in palladium electrolytes by cation-IC	В
AV-B0002064 2018-09	Determination of nitrate in nickel electrolytes by IC-UV	В
PV-12957IC 2015-06	Determination of nitrate in copper additives by IC-UV	В

Valid from: 08.05.2024 Date of issue: 08.05.2024

2.4 Determination of organic substances in salt solutions, metal solutions and electroplating baths using liquid chromatography with standard detectors (UV, CA, RI, ELS) (** B und TR)

PV-12574LC 2010-09	Determination of complexing agents in nickel concentrate by LC-UV	B, NP
PV-11011LC 2017-04	Determination of brightener in copper concentrate by LC-U	B, NP
AV-B0000444 2010-06	Determination of complexing agents in nickel electrolytes by LC-UV	B, NP
AV-B0001719 2019-07	Determination of wetting agents in nickel electrolytes by LC-CAD	В
AV-A0003069 2018-01	Determination of carrier in zinc/nickel electrolytes by LC-CAD	B, TR
AV-B0002095 2019-03	Determination of carrier in zinc/nickel electrolytes by LC-UV	B, TR
AV-A0002464 2016-10	Determination of Neolink E3 in copper electrolytes by LC-RI	В
AV-B0001325 2017-11	Determination of polymers in tin/silver electrolytes by LC-ELSD	В
EPA 8315A (SW-846) 1996-12	Determination of Carbonyl Compounds by High Performance Liquid Chromatography (HPLC) (Deviation: only for formaldehyde and derivatization according 7.3.1 or 7.3.4)	В

2.5 Determination of elements and anions in salt solutions, metal solutions, electroplating baths and waters using photometry (** B und TR)

AV-B0000831 2007-09	Determination of nitrate in nickel electrolytes by photometry	B, NP, TR
PV-14363UV 2014-07	Determination of stabilizer in copper concentrates by photometry	B, NP
AV-A0001866 2013-01	Determination of ammonium in acid zinc or tri-chrome electrolytes by photometry	B, TR

Valid from:

08.05.2024

Date of issue:

08.05.2024

Page 6 of 9

AV-A0000283 2001-09	Determination of thiourea in tin electrolytes by photometry	B, NP, TR
	ents in salt solutions, metal solutions, electroplating baths and wn spectrometry (AAS) (** B und TR)	aters
AV-A0001757 2014-05	Determination of iron in chrome electrolytes by F-AAS	В
AV-A0000170 2015-11	Determination of nickel in Zn/Ni electrolytes by F-AAS	B, NP, TR
AV-A0000171 2015-11	Determination of zinc in Zn/Ni electrolytes by F-AAS	B, NP, TR
AV-A0000156 2010-11	Determination of palladium in activators by F-AAS	B, NP
PV-14544AAS 2017-01	Determination of gold in raw materials by F-AAS	B, NP
PV-15606AAS 2018-05	Determination of sodium and potassium in e`less copper additives by F-AES	B, NP
	ents in salt solutions, metal solutions, electroplating baths and w plasma atomic emission spectrometry (ICP-OES) (** B und TR)	aters
PV-10348ICP 2006-01	Determination of As, Ca, Cr, Mg, Ni, Pb, Sb, Sn in copper concentrates by ICP-OES	B, NP
PV-14589ICP 2014-12	Determination of iron in reduction solutions by ICP-OES	B, NP
AV-B0000340 2019-09	Semiquantitative screening of 47 elements in metal salt solutions by ICP-OES	B, NP, TR
PV-14511ICP 2014-10	Determination of Ag, As, Cd, Co, Cr, Fe, In, Mg, Mn, Ni, Pb, Sn, Tl, Zn in copper additive by ICP - OES	B, NP, TR
PV-14043ICP 2017-08	Determination of Pt, Rh, Ru in palladium stock solutions by ICP - OES	В

Valid from: 08.05.2024 Date of issue: 08.05.2024

Page 7 of 9

PV-11069ICP 2018-08	Determination of Ca, Cr, Cd, Mg, Ni, Pb, As, Sb, Sn in copper bases electrolytes by ICP-OES	B, NP
PV-14872ICP 2019-06	Determination of K, Ca, Mg, Cr, Ni, As, Sb, Sn in organic additives for copper electrolytes by ICP-OES	B, NP

2.8 Determination of elements in salt solutions, metal solutions, electroplating baths and ultrapure water using inductive coupled plasma mass spectrometry (ICP-MS) **

PV-15526PMS 2018-05	Al, Ag, As, Ba, Ca, Cd, Co, Cr, Fe, Li, In, Mg, Mn, Pb, Sn, Si, Sr, Ti, V, W and Zn in e`less copper additives by ICP-MS	В
AV-A0002902 2017-12	Ag, As, Bi, Cd, Fe, Ni, P, Pb, S, Sb, Se, Sn, Te und Zn in copper anodes by ICP-MS	В

2.9 Determination of elements and organic substances in salt solutions, metal solutions and electroplating baths using electro-chemical analysis (** B)

AV-A0001611 2011-12	Determination of Pb and Cd in nickel electrolytes by polarography	B, NP
AV-A0002353 2015-11	Determination of Bi in nickel electrolytes by polarography	B, NP
PV-14659POL 2015-10	Determination of Sn(II) in colloid Sn/Pd activators by polarography	NP
AV-A0001742 2012-01	Determination of leveler in copper-electrolytes by voltammetry	B, NP
AV-A0001741 2012-03	Determination of brightener in copper electrolytes by voltammetry	B, NP
PV-9666-CVS 2019-05	Determination of brightener activity in organic additives by voltammetry	B, NP
PV-9659-CVS 2019-05	Determination of leveler activity in organic additives by voltammetry	B, NP
AV-A0000787 2018-08	Determination of correction solution in copper electrolytes by voltammetry	B, NP

Valid from: 08.05.2024 Date of issue: 08.05.2024

Page 8 of 9

2.10 Physical and physico-chemical analyses of raw materials, salt solutions, metal solutions and electroplating baths (** B und TR)

PV-5360-PHY Determination of density - oscillating U-tube principle B, NP, TR

PV-5686-PHY Determination of pH value B, NP, TR

Abbreviations used:

AV In-house method of ATOTECH Deutschland GmbH & Co. KG

DIN German Institute for Standardization

EN European Norm

IEC International Electrotechnical Commission
ISO International Organization for Standardization

PV In-house method of ATOTECH Deutschland GmbH & Co. KG

Valid from: 08.05.2024 Date of issue: 08.05.2024

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Partial Accreditation Certificate** that the testing laboratory

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 08.05.2024 with accreditation number D-PL-14564-01.

It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 5 pages.

Registration number of the partial accreditation certificate: **D-PL-14564-01-02** It is a part of the accreditation certificate: D-PL-14564-01-00.

Berlin, 08.05.2024

Dr. Joachim Kintrup (
Head of Technical Unit

Translation issued:

28.05.2024

Dr. Joachim Kintrup

Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

This document is a translation. The definitive version is the original German accreditation certificate.

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA: \

www.european-accreditation.org

ILAC:

www.ilac.org

IAF:

www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Partial Accreditation Certificate D-PL-14564-01-02 according to DIN EN ISO/IEC 17025:2018

Valid from:

08.05.2024

Date of issue:

08.05.2024

This annex is a part of the accreditation certificate D-PL-14564-01-00.

Holder of partial accreditation certificate:

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

with the locations

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Erasmusstraße 20, 10553 Berlin

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Analytiklabor Ahornallee 4, 16818 Werder

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Untergasse 47, 65468 Trebur-Geinsheim

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Abbreviations used: see last page

Page 1 of 4

Examinations in the areas:

Physical, physico-chemical and chemical analysis of process water and waste water; Sampling of waste water;

The testing laboratory is permitted to use the standardized or equivalent test methods listed here with different issue statuses without having to inform and obtain prior approval from DAkkS. The test methods listed are examples.

The testing laboratory has an up-to-date list of all test methods in the flexible accreditation area.

The test procedures are marked with the following symbols of the locations where they are carried out.

The marking B (Berlin), NP (Werder) and TR (Trebur-Geinsheim) after the test and sampling methods indicates the location for which the competence is confirmed.

B = Atotech Deutschland GmbH & Co. KG, Berlin

NP = Atotech Deutschland GmbH & Co. KG, Werder (Neuruppin)

TR = Atotech Deutschland GmbH & Co. KG, Trebur

Valid from:

08.05.2024

Date of issue:

08.05.2024

1 Analyses of process water and waste water

1.1 Sampling and sample preparation

DIN 38402-A 11 2009-02	Sampling of waste water	B, TR
DIN EN ISO 5667-3 (A 21) 2019-07	Water quality - Sampling - Part 3: Guidance on the preservation and handling of water samples	B, TR
DIN 38402-A 30 1998-07	Pretreatment, homogenization and aliquotation of non-homogeneous water samples	B, TR
1.2 Physical and physico-ch	emical parameters	
DIN EN ISO 10523 (C 5) 2012-04	Water quality - Determination of pH value	B, NP, TR
DIN EN 27888 (C 8) 1993-11	Water quality - Determination of electrical conductivity	B, NP, TR
1.3 Anions		
DIN EN ISO 10304-1 (D 20) 2009-07	Water quality - Determination of dissolved anions by liquid chromatography of ions - Part 1: Determination of bromide, chloride, fluoride, nitrate, nitrite, phosphate and sulfate	B, NP
DIN 38405-D 24 1987-05	Photometric determination of chromium(VI) using 1,5-diphenylcarbonohydrazide	B, TR
DIN 38405-D 27 2017-10	Determination of sulfide by gas extraction method (Deviation: only the procedure DIN 38405 - D 27-1 Determination of easily liberatable sulfide)	В
Hach LCK 315 2013-04	Cyanide cuvette test, 0.01-0.6 mg/L CN (LCK 315) (Deviation: only easily liberatable cyanide)	B, NP, TR
Hach LCK 313 2019-10	Chromium (III und VI) cuvette test, 0.03-1.0 mg/L Cr (LCK 313)	TR

Valid from:

2019-10

08.05.2024

(LCK 353)

Date of issue:

Hach LCK 353

08.05.2024

Page 3 of 4

NP

Sulfate cuvette test, 150-900 mg/L SO₄

Hach LCK 350 Phosphate (ortho/total) cuvette test, 2.0-20.0 mg/L PO₄-P NP 2019-03 (LCK 350)

1.4 Cations

1.5

DIN EN ISO 11885 (E 22) Water quality - Determination of 33 elements by inductively B, NP, coupled plasma atomic emission spectroscopy (ICP-OES) TR

DIN EN ISO 17294-2 (E 29) Water quality - Application of inductively coupled plasma mass B spectrometry (ICP-MS) - Part 2: Determination of selected

elements including uranium isotopes

Hach LCK 303 Ammonium cuvette test, $2.0-47.0 \text{ mg/L NH}_4-\text{N}$ NP, TR 2019-10 (LCK303)

Sum parameters

DIN EN 1484 (H 3) Water analysis - Guidelines for the determination of total B

2019-04 organic carbon (TOC) and dissolved organic carbon (DOC)

(Deviation: only particle-free sample (DOC))

Hach LCI 400/500 COD cuvette test 0-1000 mg/L O₂ B, NP

2019-10 (LCI 400/500)

Hach LCK 410 Free chlorine cuvette test, 0.05-2.0 mg/L Cl₂ NP, TR

2013-04 (LCK410)

Abbreviations used:

DIN German Institute for Standardization

EN European Norm

IEC International Electrotechnical Commission
ISO International Organization for Standardization

LCK Hach Cuvette-Test-System

Valid from: 08.05.2024 Date of issue: 08.05.2024

Page 4 of 4

Accreditation

The Deutsche Akkreditierungsstelle attests with this **Partial Accreditation Certificate** that the testing laboratory

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

meets the requirements according to DIN EN ISO/IEC 17025:2018 for the conformity assessment activities listed in the annex to this certificate. This includes additional existing legal and normative requirements for the testing laboratory, including those in relevant sectoral schemes, provided they are explicitly confirmed in the annex to this certificate.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This accreditation was issued in accordance with Art. 5 Para. 1 Sentence 2 of Regulation (EC) 765/2008, after an accreditation procedure was carried out in compliance with the minimum requirements of DIN EN ISO/IEC 17011 and on the basis of a review and decision of the appointed accreditation committees.

This partial accreditation certificate only applies in connection with the notice of 08.05.2024 with accreditation number D-PL-14564-01.

It consists of this cover sheet, the reverse side of the cover sheet and the following annex with a total of 8 pages.

Registration number of the partial accreditation certificate: **D-PL-14564-01-03**

It is a part of the accreditation certificate: D-PL-14564-01-00.

Translation issued:

28.05.2024

Dr. Tobias Poeste Head of Technical Unit

Berlin, 08.05.2024

Dr. Tobias Poeste
Head of Technical Unit

The certificate together with the annex reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH (www.dakks.de).

 $This \ document \ is \ a \ translation. \ The \ definitive \ version \ is \ the \ original \ German \ accreditation \ certificate.$

Deutsche Akkreditierungsstelle GmbH

Office Berlin Spittelmarkt 10 10117 Berlin Office Frankfurt am Main Europa-Allee 52 60327 Frankfurt am Main Office Braunschweig Bundesallee 100 38116 Braunschweig

The Deutsche Akkreditierungsstelle GmbH (DAkkS) is the entrusted national accreditation body of the Federal Republic of Germany according to § 8 section 1 AkkStelleG in conjunction with § 1 section 1 AkkStelleGBV. DAkkS is designated as the national accreditation authority by Germany according to Art. 4 Para. 4 of Regulation (EC) 765/2008 and clause 4.7 of DIN EN ISO/IEC 17000.

Pursuant to Art. 11 section 2 of Regulation (EC) 765/2008, the accreditation certificate shall be recognised as equivalent by the national authorities within the scope of this Regulation as well as by the WTO member states that have committed themselves in bilateral or multilateral mutual agreements to recognise the certificates of accreditation bodies that are members of ILAC or IAF as equivalent.

DAkkS is a signatory to the multilateral agreements for mutual recognition of the European co-operation for Accreditation (EA), International Accreditation Forum (IAF) and International Laboratory Accreditation Co-operation (ILAC).

The up-to-date state of membership can be retrieved from the following websites:

EA: www.european-accreditation.org

ILAC: www.ilac.org IAF: www.iaf.nu

Deutsche Akkreditierungsstelle

Annex to the Partial Accreditation Certificate D-PL-14564-01-03 according to DIN EN ISO/IEC 17025:2018

Valid from: 08.05.2024

Date of issue: 08.05.2024

This annex is a part of the accreditation certificate D-PL-14564-01-00.

Holder of partial accreditation certificate:

Atotech Deutschland GmbH & Co. KG Erasmusstraße 20, 10553 Berlin

with the locations

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Erasmusstraße 20, 10553 Berlin

Atotech Deutschland GmbH & Co. KG Analytics und Materials Science Untergasse 47, 65468 Trebur-Geinsheim

The testing laboratory meets the requirements of DIN EN ISO/IEC 17025:2018 to carry out the conformity assessment activities listed in this annex. The testing laboratory meets additional legal and normative requirements, if applicable, including those in relevant sectoral schemes, provided that these are explicitly confirmed below.

The management system requirements of DIN EN ISO/IEC 17025 are written in the language relevant to the operations of testing laboratories and they conform to the principles of DIN EN ISO 9001.

This certificate annex is only valid together with the written accreditation certificate and reflects the status as indicated by the date of issue. The current status of any given scope of accreditation can be found in the directory of accredited bodies maintained by Deutsche Akkreditierungsstelle GmbH at https://www.dakks.de.

Examinations in the areas:

Chemical-physical tests, corrosion tests and mechanical-technological tests on coatings, coating systems, materials and/or coated preparations;

Physical testing of aqueous and organic coating systems;

Tests in accordance with manufacturer specifications

Within the test areas marked with *, the testing laboratory is permitted to freely select standardized or equivalent test methods without having to inform and obtain prior approval from DAkkS.

The testing laboratory is permitted to use the standardized or equivalent test methods listed here with different issue statuses without the need for prior information and approval by DAkkS. Excluded from this is chapter 3.

The test methods listed are examples.

The testing laboratory has an up-to-date list of all test methods in the flexible accreditation area.

The test procedures are marked with the following symbols of the locations where they are carried out.

The marking B (Berlin) and TR (Trebur-Geinsheim) after the test and sampling methods indicates the location for which the competence is confirmed.

B = Atotech Deutschland GmbH & Co. KG, Berlin

TR = Atotech Deutschland GmbH & Co. KG, Trebur

Valid from: 08.05.2024 Date of issue: 08.05.2024

1	Analysis of layers, layer systems and materials
1.1	Metallographical tests

DIN EN ISO 1463 2021-08	Metallic and oxide coatings - Measurement of coating thickness - Microscopical method	В
DIN EN ISO 9220 2022-05	Metallic coatings - Measurement of coating thickness - Scanning electron microscope method	В

1.2 Measurement of coating thickness with non-destructive tests

DIN EN ISO 3497	Metallic coatings - Measurement of coating thickness -	В
2001-12	X-ray spectrometric method	

1.3 Chemical - physical tests for coating thickness measurement on nickel-plated components using the STEP-Test and on chrome-plated components for quantitative detection of microcracks or micropores *

DIN EN ISO 16866 2023-01	Metallic and other inorganic coatings - Simultaneous thickness and electrode potential determination of individual layers in multilayer nickel deposits (STEP test)	В
ASTM B 764 2004-04	Standard Test Method for Simultaneous Thickness and Electrode Potential Determination of Individual Layers in Multilayer Nickel Deposit (STEP - Test)	В
DIN 53100 2020-04	Metallic coatings - Electroplated coatings of nickel plus chromium and of copper plus nickel plus chromium on plastics materials	В
ASTM B 604 1991	Standard Specification for Decorative Electroplated Coatings of Copper Plus Nickel Plus Chromium on Plastics	В

Valid from:

08.05.2024

Date of issue:

08.05.2024

1.4	$C \cap$	rros	ion	tests
4.4	Lυ	1103	иоп	resrs

1.4.1 Constant climate salt spray tests on screws, fasteners, metal panels, components and decoratively coated parts to determine qualitative statements *

DIN EN ISO 9227 2023-03	Corrosion tests in artificial atmospheres - Salt spray tests	B, TR
ASTM B 368 2021	Standard Test Method for Copper-Accelerated Acetic Acid-Salt Spray (Fog) Testing (CASS Test)	В
ASTM B 117 2019	Standard Practice for Operating Salt Spray (Fog) Apparatus	B, TR

1.4.2 Condensation water climate test on screws, fasteners, sheets, components and decoratively coated parts to determine qualitative statements *

DIN EN ISO 6270-2 2018-04	Paints and varnishes - Determination of resistance to humidity - Part 2: Condensation (in-cabinet exposure with heated water reservoir)	B, TR
ASTM D 2247 2015	Standard Practice for Testing Water Resistance of Coatings in 100 % Relative Humidity	TR

1.4.3 Kesternich test on screws, fasteners, sheets, components and decoratively coated parts to determine qualitative statements *

DIN EN ISO 22479	Corrosion of metals and alloys - Sulfur dioxide test in a humid	TR
2022-08	atmosphere (fixed gas method)	

Valid from:

08.05.2024

Date of issue:

08.05.2024

Page 4 of 8

1.5 Mechanical-technological tests

1.5.1 Determination of the peel strength by means of a tensile test on copper-plated or decoratively coated components *

ASTM B 533

Standard Test Method for Peel Strength of Metal Electroplated B

1985

Plastics

Torque/clamp force test on plain, galvanized or nickel-plated screws or nuts to determine the tightening properties *

DIN EN ISO 16047

Fasteners - Torque/clamp force testing

TR

TR

2013-01

Geometric measurements

DIN EN ISO 21920-3

Geometrical Product Specifications (GPS) - Surface texture:

2022-12

Profile method - Rules and procedures for the assessment of

surface texture

1.5.4 Vickers hardness test

DIN EN ISO 6507-1

Metallic materials - Vickers hardness test - Part 1: Test method TR

2018-07

(Deviation: only HV5 - HV30)

2 Physical investigations of aqueous and organic paint systems

DIN EN ISO 13736

Determination of flash point - Abel closed-cup method

TR

2013-08

DIN EN ISO 3251

Paints, varnishes and plastics - Determination of non-volatile-

TR

2019-09

matter content

DIN EN ISO 2431

Paints and varnishes - Determination of flow time by use of flow cups

TR

2012-03

(Deviation: only Cup3 and also <30s and >100s)

DIN ISO 2811-1

Paints and varnishes - Determination of density - Part 1:

TR

2016-08

Pycnometer method

TR

DIN EN ISO 2409

Paints and varnishes - Cross-cut test

Valid from:

2013-06

08.05.2024

Date of issue:

08.05.2024

Page 5 of 8

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

3 Tests according to manufacturer's instructions 3.1 **Micropore Density VW PV 1063** Chrome-Plated Surfaces - Determining the Micropore Density В 2018-11 3.2 Constant climate salt spray tests on screws, fasteners, metal panels and components to determine qualitative statements Renault D17 1058 -K **Neutral Salt Spray Test** B, TR 2014-11 3.3 **Climate Change Test VW PV 1200** Vehicle Parts, Testing the Environmental Cycle Resistance (80 B, TR 2019-10 °C/-40 °C) 3.4 **Cyclic Corrosion Test** Volvo STD 423-0014 (ACT) Accelerated corrosion test - Atmospheric corrosion B, TR 2015-01 Volvo VCS 1027, 1449 (ACT II) Accelerated corrosion test - version II - ACT II B, TR 2014-02 Ford CETP 00.00-L-467 Global Laboratory Accelerated Cyclic Corrosion Test B, TR 2019-01 GMW 14872 **Cyclic Corrosion Laboratory Test** B, TR 2022-03 **VW PV 1210** Body and Add-On Parts/Hang-On Parts, Corrosion Test B, TR 2016-02 VW PV 1209 Add-On Parts/Hang-On Parts with a Zinc or Zinc Alloy Coating B, TR 2016-02 and Aluminum Add-On Parts/Hang-On Parts (e.g., Heat Exchanger, Refrigerant Line), Corrosion Test (Environmental Corrosion Cycle Test) Renault D17 2028 -C (ECC1) Corrosion test by automatic change of phases of salt spray, B, TR

Valid from: 08.05.2024

2007-10

Date of issue: 08.05.2024 Page 6 of 8

drying and humidity (ECC1)

This document is a translation. The definitive version is the original German annex to the accreditation certificate.

3.5 Torque/clamp force test on plain, galvanized or nickel-plated screws or nuts to determine the tightening properties

GMW 3044 2017-10	Material Specification: Zinc Plating	TR
GMW 3359 2020-03	Material Specification: Non-Electrolytically Applied Zinc-Rich Coating	TR
GMW 4700 2014-02	Material Specification: Zinc Alloy Plating	TR
GMW 16730 2017-11	Material Specification: Cosmetic Coating, Black Zinc-Nickel Based	TR
Ford WZ 102 2021-08	Fastener – Torque/Clamp Force Testing - Standard Conditions	TR
Renault 01-50-005 -H 2017-03	Fasteners—Torque-Tension relation test for Bolts and Nuts	TR
VW 01131 2018-03	Determination of friction coefficients - practice and assembly- oriented testing	TR
MBN 10544 2019-01	Testing the torque/preload behavior	TR

3.6 Minimum Performance Requirements for Decorative Chromium Plated Plastic Parts

GMW 14668	Material Specification: Minimum Performance Requirements	B, TR
2021-03	for Decorative Chromium Plated Plastic Parts	

Valid from: 08.05.2024 Date of issue: 08.05.2024

Abbreviations used:

ASTM

American Society for Testing and Materials

DIN

German Institute for Standardization

ΕN

European Norm

Ford WZ xxx

Ford Testing specification Ford Testing specification

Ford CETP xx.xx-x-xxx GMW xxxx(x)

General Motors Worldwide Engineering Standards

IEC ISO

PV

International Electrotechnical Commission

International Organization for Standardization

In-house method of ATOTECH Deutschland GmbH

Renault D17 xxxx-x Renault xx-xx-xxx-x

Renault Testing specification Renault Testing specification Volvo Testing specification Volvo Testing specification

Volvo VCS xxxx Volvo STD xxx-xxxx VW (PV) xxxx(x)

Volkswagen Testing specification

Valid from:

08.05.2024

Date of issue:

08.05.2024

Page 8 of 8